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Source: Hurricane Irma Tweets (Hong et al. 2020)

Hong, L., & Frias-Martinez, V. (2020). Modeling and predicting evacuation flows during hurricane Irma. EPJ Data Science, 9(1), 29.

“Real help requests posted during Hurricane Irma on Twitter (X)”
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Source: Hurricane Irma Tweets (Hong et al. 2020)

Hong, L., & Frias-Martinez, V. (2020). Modeling and predicting evacuation flows during hurricane Irma. EPJ Data Science, 9(1), 29.

“Real help requests posted during Hurricane Irma on Twitter (X)”

Medical Emergency Structural Collapse Family in Danger

“Thousands of people post help requests like these—but many receive no response.”



During Disasters, People Turn to Social Media for Help… 
• People post urgent needs on Twitter (X), hoping someone will respond.
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During Disasters, People Turn to Social Media for Help… 
• People post urgent needs on Twitter (X), hoping someone will respond.
• Emergency responders can’t keep up with the volume and urgency of social media requests.
• Responses are often missing, delayed, or inaccurate.

What if AI could step in and help respond—fast, helpful, and reliable?
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Our Goal
Main Objective

Build an AI assistant that can generate fast, helpful, and human-like responses to crisis-related social media posts.
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What We Aim to Achieve
• Understand the help-seeker’s intent from short, noisy tweets
• Provide factually accurate and grounded information using trusted sources 
• Deliver clear, actionable steps people can follow during an emergency
• Show empathy to build trust and provide emotional support
• Balance all of these in real-time responses
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Our Approach

We explore three methods using Large Language Models (LLMs):

1. Instruction Prompt – guided generation

2. RAG – Document-grounded generation

3. Dynamic Fusion – Our proposed method to combine the best of both

What We Aim to Achieve
• Understand the help-seeker’s intent from short, noisy tweets
• Provide factually accurate and grounded information using trusted sources 
• Deliver clear, actionable steps people can follow during an emergency
• Show empathy to build trust and provide emotional support
• Balance all of these in real-time responses



Evaluation Dimensions
• Professionalism – The response sounds official, reliable, and well-

informed.
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“Good crisis communication must be clear, credible, caring, and on point.”



Dataset

Raw Dataset

• Source: Hurricane Irma Tweets (Hong et al. 2020)1

• Timeframe: August 15 – October 12, 2017

• Location: 6 Southern U.S. states
 (Florida, Georgia, South Carolina, North Carolina, Tennessee, Alabama)

• Raw Data: 1,013,313 tweets from 127,181 users
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Detecting Needs-Related Tweets

• Trained three RoBERTa models on crisis-labeled datasets (Alam et al., 2021a; Alam et al., 2021b)2,3

• HumanAID, CrisisBench, Turkey Earthquake Relief

• Tweets labeled as "needs-related" if all three models agree

Final Labeled Dataset

• 540 verified needs-related tweets

• Used as input for LLM-based response generation
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What is Instruction Prompting?
Give an LLM clear, structured instructions to generate a response for crisis-related tweets.

You are an AI assistant designed to provide professional, actionable, empathetic, and relevant advice for someone 
seeking help related to a hurricane on social media.
Given the following tweet expressing needs during a hurricane, provide a detailed solution. If you don’t know the 
answer, clearly state, "I don’t know".
Guidelines:
- Prioritize immediate actions, labeled as Step 1, Step 2, etc.
- For each step, add a short explanation.
- Include links, organizations, or contact info if relevant.

Prompt Design
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Combine the power of LLMs with trusted external documents (e.g., FEMA guides) to ground the response in real-world 
knowledge.

How It Works – 3 Steps

• Knowledge Base Construction

• We curated FEMA documents1 (e.g., Individual Assistance Guide).

• Split into small chunks for retrieval.

• Document Retrieval

• Hybrid retriever = Keyword-based (BM25) + Semantic search (MiniLM)

• Top-5 relevant documents selected.

• Response Generation

• The retrieved documents are concatenated with the user tweet and fed 

into the LLM.

• Generates a grounded, informative reply.

Hybrid Retriever
(BM25 + MiniLM)

Final Response 

Tweet

Knowledge Base
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Generate two responses:
1. Instruction Prompt
2. RAG
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If one response scores highest across all → Select it
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If mixed performance → Fuse the best-scoring parts from each
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How Well Do the Methods Perform?
We evaluate responses generated by:
• Instruction Prompt
• Retrieval-Augmented Generation (RAG)
• Dynamic Fusion (Proposed)

Across three LLMs:
• LLaMA 3.1 8B Instruct
• Mistral 8B Instruct
• Qwen2.5 7B Instruct
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Model Method P A E R O (Overall)

LLaMA

Instruction Prompt 0.74 0.52 0.06 0.43 0.55

RAG 0.96 0.63 0.22 0.40 0.70

Dynamic Fusion 0.92 0.97 0.04 0.46 0.81

Mistral

Instruction Prompt 0.87 0.98 0.03 0.41 0.78

RAG 0.87 0.97 0.13 0.42 0.79

Dynamic Fusion 0.97 0.99 0.06 0.50 0.84

Qwen

Instruction Prompt 0.98 0.99 0.03 0.45 0.84

RAG 0.79 0.86 0.14 0.47 0.72

Dynamic Fusion 0.98 0.99 0.08 0.51 0.85
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• Qwen2.5 7B Instruct

P = Professionalism; A = Actionability; E = Empathy; R = Relevance; O = Overall Quality (weighted).
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Conclusions
Key Findings

• Large Language Models (LLMs) show strong potential for assisting in real-time crisis communication on social 
media.

• Instruction Prompt and RAG methods each have strengths:
• Instruction Prompts offer structure response.
• RAG improves factual grounding and reduces hallucinations.

• Our proposed Dynamic Fusion method consistently delivers the highest overall response quality, combining:
• Professional tone
• Clear, actionable guidance
• Grounded information
• Balanced relevance
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Dynamic Fusion offers a promising path to building scalable, trustworthy AI responders that can 
support affected individuals during crises.



Limitations & Future Work
Current Limitations

• Single Crisis Scenario
• Tested only on Hurricane Irma tweets
• May not generalize across other disaster types (e.g., 

earthquakes, pandemics)

• Fusion Agent Simplicity
• Fusion currently relies on basic score comparison and 

selection
• Might overlook deeper reasoning or nuanced combinations

• Empathy Gap
• Dynamic Fusion improved professionalism & actionability
• But still lags in empathetic tone compared to human 

responders
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Future Work

• Expand to multiple crisis types
o Apply to floods, wildfires, and health emergencies
o Test multilingual and multicultural variations

• Improve Fusion Strategy
o Integrate Chain-of-Thought (CoT) reasoning to 

guide how components are fused
o Explore adaptive prompting or ensemble 

decision-making
•  Real-Time Deployment Potential

o Collaborate with NGOs or emergency response 
teams

o Enable LLMs to act as first-line information 
assistants



Thank You!
Contact: AnirbanSahaAnik@my.unt.edu
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